Transcription-dependent redistribution of nuclear protein 4.1 to SC35-enriched nuclear domains.
نویسندگان
چکیده
Protein 4.1, originally identified as a component of the membrane-skeleton of the red blood cell, has also been localized in the nucleus of mammalian cells. To learn more about nuclear 4.1 protein, we have analyzed the nature of its association with the nuclear structure in comparison with SC35 and snRNP antigens, splicing proteins of the nuclear speckle domains. When MDCK or HeLa cells were digested with DNase I and washed in the presence of high salt (2 M NaCl), snRNP antigens were extracted whereas protein 4.1 and SC35 remained colocalizing in nuclear speckles. In cells treated with RNase A or heat shocked, nuclear 4.1 distribution also resembled that of SC35. Experiments carried out in transcriptionally active nuclei showed that protein 4.1 distributed in irregularly shaped speckles which appeared to be interconnected. During transcriptional inhibition, protein 4.1 accumulated in rounded speckles lacking interconnections. When cells were released from transcriptional inhibition, protein 4.1 redistributed back to the interconnected speckle pattern of transcriptionally active cells, as it was also observed for SC35. Finally, coprecipitation of 4.1 and SC35 proteins from RNase A digested HeLa nuclei further indicates that these two proteins are associated, forming part of the nuclear speckle domains to which they attach more tightly than snRNP antigens.
منابع مشابه
Functional association of nuclear protein 4.1 with pre-mRNA splicing factors.
Protein 4.1 is a multifunctional polypeptide that links transmembrane proteins with the underlying spectrin/actin cytoskeleton. Recent studies have shown that protein 4.1 is also present in the nucleus, localized in domains enriched in splicing factors. Here we further analyze the relationship between protein 4. 1 and components of the splicing machinery. Using HeLa nuclear extracts capable of ...
متن کاملTranscription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains
A subpopulation of the largest subunit of RNA polymerase II (Pol II LS) is located in 20-50 discrete subnuclear domains that are closely linked to speckle domains, which store splicing proteins. The speckle-associated fraction of Pol II LS is hyperphosphorylated on the COOH-terminal domain (CTD), and it is highly resistant to extraction by detergents. A diffuse nucleoplasmic fraction of Pol II ...
متن کاملProtein 4.1 is a component of the nuclear matrix of mammalian cells.
Protein 4.1 is a major component of the erythrocyte membrane skeleton that promotes the interaction of spectrin with actin and links the resulting complex network to integral membrane proteins. Here we analyse the distribution of different 4.1 proteins within the nucleus of mammalian cells. Nuclear matrices have been prepared from Madin-Darby canine kidney (MDCK) and HeLa cells and protein frac...
متن کاملIntranuclear targeting of AML/CBFalpha regulatory factors to nuclear matrix-associated transcriptional domains.
The AML/CBFalpha runt transcription factors are key regulators of hematopoietic and bone tissue-specific gene expression. These factors contain a 31-amino acid nuclear matrix targeting signal that supports association with the nuclear matrix. We determined that the AML/CBFalpha factors must bind to the nuclear matrix to exert control of transcription. Fusing the nuclear matrix targeting signal ...
متن کاملPKC-Theta is a Novel SC35 Splicing Factor Regulator in Response to T Cell Activation
Alternative splicing of nuclear pre-mRNA is essential for generating protein diversity and regulating gene expression. While many immunologically relevant genes undergo alternative splicing, the role of regulated splicing in T cell immune responses is largely unexplored, and the signaling pathways and splicing factors that regulate alternative splicing in T cells are poorly defined. Here, we sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 110 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1997